Translating Problems into Code: What Findings in Decision-Making Suggest About Teaching Computational Problem Solving At the First-Year Level

Jason M. Daida
daida@umich.edu

Presented at the Fourth Annual Research and Scholarship in Engineering Education Poster Session. 10/22/09.

Abstract

This investigation looks at deliberately evoking skills more typically associated with emotions to help first-year engineering students do computational problem solving.

Background

- Decision-making sciences indicate the use of amygdala (emotion), not just prefrontal cortex (logic) (Lehrer, 2009)
- Computational problem solving may be analogous to problem solving in physics
 - In physics, a translation space helps to determine the direction math should take (Root-Bernstein, 1991)

Method

- Use of drawing (doodling) has been indicated with use of amygdala (Ablon, et al., 1993)
- Incorporate structured doodling into lectures / labs (Winter 2009 ENGR 101, Introduction to Computers and Programming, Section 100) (test)
- Comparison with Fall 2007, ENGR 101, Section 100, which had a similar curriculum (control)

Results: Examples

- Successful doodles do abstract various subtasks that are implicit in an algorithm
- Successful doodles do examine an algorithm from more than one aspect (e.g., sketch, list, table, test case, jot)
- Example: Accumulator

Results

- Proficiency of doodles is positively correlated with a proficiency in programming
 - Q9 (doodle) & Q10 (associated program) on second midterm, W09 ($N_{2009} = 131$ students)

- Doodling seems to benefit women
 - Median grade gap between men and women narrows considerably ($N_{2007} = 146$ students)

Conclusions

- Introduction of structured doodling into curriculum indicated an overall beneficial effect on learning
- Women seem to have benefited significantly
- More study needed to adjust for possible confounds

Acknowledgments

Much appreciation extended to Catherine McGhan, Kim Khalsa, & Chris Takahashi. This research is funded by U-M and CRLT.